Types

- (a) What is meant by beta-reduction, beta-conversion and beta-normal forms for the polymorphic lambda calculus (PLC)? Explain why typeable PLC expressions are beta-convertible to beta-normal forms that are unique up to alpha-conversion. Is the same true for untypeable PLC expressions? (Any general properties of PLC you use should be clearly stated, but need not be proved.) [10 marks]
- (b) Let τ be the PLC type $\forall \beta((\alpha \to \beta) \to \beta)$, where α and β are distinct type variables. Give closed PLC beta-normal forms I and J with the following properties:
 - (i) I has type $\forall \alpha (\alpha \to \tau)$
 - (*ii*) J has type $\forall \alpha(\tau \rightarrow \alpha)$
 - (*iii*) $\Lambda \alpha(\lambda x : \alpha(J \alpha (I \alpha x)))$ has beta-normal form $\Lambda \alpha(\lambda x : \alpha(x))$

Justify your answers by giving proofs of typing and beta-conversion.

[8 marks]

What is the beta-normal form of $\Lambda \alpha(\lambda y : \tau(I \alpha (J \alpha y)))$? [2 marks]