2009 Paper 8 Question 3

Computer Systems Modelling

- (a) Suppose that X is a random variable having the Binomial distribution with parameters n and p and that $\lambda > 0$ is a constant.
 - (i) Write down the expression for $\mathbb{P}(X = k)$ where $k \in \{0, 1, 2, \dots, n\}$ [2 marks]
 - (*ii*) Now suppose that $n \to \infty$ and p is chosen so that $p = \lambda/n$. Show that under this limit $\mathbb{P}(X = k) \to e^{-\lambda} \lambda^k / k!$, that is, to a Poisson distribution with parameter λ . [4 marks]
- (b) Suppose that N(t) is the random number of events in the time interval [0, t] of a Poisson process with parameter λ .
 - (i) State the conditions that define the Poisson process N(t). [2 marks]
 - (*ii*) Show that for all t > 0 the random variable N(t) has the Poisson distribution with parameter λt . [4 marks]
- (c) Given a Poisson process of rate λ let X_1 be the time of the first event and for n > 1 let X_n denote the time between the events (n - 1) and n. Thus the sequence X_1, X_2, \ldots gives us the sequence of *inter-event times* between the events in a Poisson process.
 - (i) Show that

$$\mathbb{P}(X_1 > t) = \mathbb{P}(N(t) = 0)$$

for t > 0. [4 marks]

(*ii*) Show that the inter-event times X_1, X_2, \ldots are independent, identically distributed random variables each of whose marginal distribution is an Exponential with rate parameter λ . [4 marks]