## 2009 Paper 8 Question 1

## Artificial Intelligence II

Consider the following Bayesian Network:


The associated probability distributions for the binary random variables $A, B, C$ and $D$ are $\operatorname{Pr}(a)=0.7, \operatorname{Pr}(\neg a)=0.3$ and:

| $A$ | $\operatorname{Pr}(b \mid A)$ | $B$ | $\operatorname{Pr}(c \mid B)$ | $B$ | $C$ | $\operatorname{Pr}(d \mid B, C)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\top$ | 0.1 | $\top$ | 0.2 | $\top$ | $\top$ | 0.6 |
| $\perp$ | 0.15 | $\perp$ | 0.95 | $\top$ | $\perp$ | 0.5 |
|  |  |  |  | $\perp$ | $\top$ | 0.4 |
|  |  |  |  | $\perp$ | $\perp$ | 0.3 |

(a) Write down an expression for the full joint distribution of the random variables $A, B, C$ and $D$. Compute the probability that $A$ and $B$ are $T$ while $C$ and $D$ are $\perp$.
(b) Use the variable elimination algorithm to compute the probability distribution of $B$ conditional on the evidence that $D=\perp$.
(c) Explain why the variable elimination might not be an effective algorithm to use in practice and suggest an alternative that addresses the shortcoming you have given.

