Advanced Graphics

(a)	Stat	te the Jordan curve theorem.	[1 mark]	
(b)	Give expi	Given point V and simple convex planar polygon $P = \{v_0, v_1, \ldots, v_{n-1}\}$ in \mathbb{R}^3 , express:		
	(i)	A test for whether V is coplanar with P .	[1 mark]	
	(ii)	A test for whether V lies <i>strictly inside</i> P .	[2 marks]	
	(iii)	A test for whether V lies on the border of P .	[1 mark]	
(<i>c</i>)	(i)	Describe an algorithm for ray-tracing a complex CSG (Constructive Solid Geometry) shape. How could your algorithm be represented by a state machine? [4 marks		
	(ii)	Identify <i>three</i> Boolean operations that your algorithm would between primitives.	d support [1 mark]	

- (*iii*) Would your algorithm perform ray-primitive intersections in local, eye, screen, or world co-ordinates? Why? [2 marks]
- (d) (i) Show that the closed uniform B-Spline of degree 2 and with knot vector $\{0, 0, 0, 1, 1, 1\}$ is a quadratic Bézier curve. [6 marks]
 - (*ii*) Sketch the basis functions of the curve's coefficient polynomials. Accuracy is not critical. [2 marks]