2009 Paper 7 Question 2

Advanced Graphics

(a) State the Jordan curve theorem.
(b) Given point V and simple convex planar polygon $P=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ in \mathbb{R}^{3}, express:
(i) A test for whether V is coplanar with P.
(ii) A test for whether V lies strictly inside P.
(iii) A test for whether V lies on the border of P.
(c) (i) Describe an algorithm for ray-tracing a complex CSG (Constructive Solid Geometry) shape. How could your algorithm be represented by a state machine?
(ii) Identify three Boolean operations that your algorithm would support between primitives.
[1 mark]
(iii) Would your algorithm perform ray-primitive intersections in local, eye, screen, or world co-ordinates? Why?
(d) (i) Show that the closed uniform B-Spline of degree 2 and with knot vector $\{0,0,0,1,1,1\}$ is a quadratic Bézier curve.
(ii) Sketch the basis functions of the curve's coefficient polynomials. Accuracy is not critical.

