
2009 Paper 6 Question 9

Semantics of Programming Languages

Consider the following syntax for a pure untyped functional language.

Booleans b ∈ B = {truetruetrue, falsefalsefalse}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Variables x ∈ X for a set X = {x, y, z, ...}
Operations op ::= + | ≥
Expressions

e ::= skipskipskip | n | b | e1 op e2 | ififif e1 thenthenthen e2 elseelseelse e3 | fnfnfn x ⇒ e | e1 e2 | x | fixfixfix e

The language supports recursion with a fixed-point operator fixfixfix e, which has
semantics defined by the rule below.

fixfixfix e −→ e(fixfixfix e)

(a) Give the semantic rules for function application for call-by-value, call-by-
name, and full-beta reduction for this language (do not give the rules for
binary operators, conditional, or fix). You should define a small-step reduction
relation e −→ e ′, stating precisely what notion of values v you are using.

[10 marks]

(b) For the call-by-value semantics, characterise the expressions e from the
grammar above that have an immediate runtime error in their outermost (top-
level) construct. [3 marks]

(c) For each pair of semantics (call-by-value and call-by-name, call-by-name and
full-beta, and full-beta and call-by-value), give an expression with different
possible termination behaviours in each element of the pair. [4 marks]

(d) For each of your three semantics, explain a disadvantage in using that
semantics for a programming language. [3 marks]

1

