2009 Paper 6 Question 6

Foundations of Functional Programming

- (a) Define what it means for a λ -calculus term to be in normal form. Is it possible for a λ -term to have two normal forms that are not α -equivalent? Provide justification for your answer. [3 marks]
- (b) For each of the following, give an example of a λ -term that
 - (i) is in normal form;
 - (ii) is not in normal form but has a normal form; and
 - (iii) does not have a normal form.

For (ii), you should also present the term's normal form, and for (iii) you should show that the term does not have a normal form. [4 marks]

We define a λ -term N to be non-trivial iff there exist A and B such that $NA \rightarrow^*$ true and $NB \rightarrow^*$ false, where true and false encode the Booleans.

(c) Give an example of a λ -term that is non-trivial, and show that it is non-trivial. [2 marks]

We define a λ -term N as *total* iff for each λ -term M, either $NM \to^*$ true or $NM \to^*$ false

- (d) Give an example of a λ -term that is total, and show that it is total. [2 marks]
- (e) Prove that there is no non-trivial and total λ -term.

[Hint: Suppose N is non-trivial and total where $NA \to^*$ true and $NB \to^*$ false, and consider the term N(YL) where $L \equiv (\lambda x. \text{ if } (Nx)BA)$ and where Y is the fixed-point operator.]

[7 marks]

(f) What consequences does this have for defining a general equality λ -term such that

equal $AB \rightarrow^*$ true if A = Bequal $AB \rightarrow^*$ false otherwise

[2 marks]