
2009 Paper 5 Question 6

Concurrent Systems and Applications

(a) The following method is intended to return unique integer values to callers:

volatile int x = 0;

int getNext() {

x = x + 1;

return x;

}

(i) Two threads call getNext concurrently on the same object. Explain how
both threads can receive the result 1. [1 mark]

(ii) Explain the semantics of the synchronized keyword in Java, and
illustrate this by correcting getNext (you may ignore the possibility of
integer overflow). [6 marks]

(iii) Explain the meaning of the volatile modifier. Explain whether or not
you need to use it with your new implementation of getNext. [2 marks]

(b) The following method is intended to implement a barrier for synchronization
between four threads. The first three threads to call the barrier method are
meant to block. These threads are all unblocked when the fourth call is made.

int barrierCount = 0;

void synchronized barrier() throws InterruptedException {

barrierCount ++;

if (barrierCount < 4) {

wait();

} else {

notifyAll();

} }

(i) A programmer finds that some threads return early, although there have
been fewer than four calls to barrier. How can this happen? [2 marks]

(ii) Rewrite barrier so that threads wait correctly. [2 marks]

(iii) Explain whether or not it would be correct to use notify in place of
notifyAll in your solution. [2 marks]

(iv) If a thread is interrupted while waiting within barrier then the
call to wait will fail with InterruptedException. Rewrite barrier

so that, if one thread is interrupted when using a barrier, then
any future (or concurrent) calls to that barrier will also fail with
InterruptedException. [5 marks]

1


