2009 Paper 4 Question 9

Mathematical Methods for Computer Science

For functions $f: \mathbb{R} \rightarrow \mathbb{C}$ define the Fourier transform of f, written $\mathcal{F}_{[f]}(\omega)$, as the function $\mathbb{R} \rightarrow \mathbb{C}$ given by

$$
\mathcal{F}_{[f]}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

whenever the integral exists.
(a) Show that

$$
\mathcal{F}_{[\alpha f+\beta g]}(\omega)=\alpha \mathcal{F}_{[f]}(\omega)+\beta \mathcal{F}_{[g]}(\omega)
$$

for all complex constants $\alpha, \beta \in \mathbb{C}$ and functions f and g such that their Fourier transforms exist.
(b) For $a, b \in \mathbb{R}$ with $a \neq 0$, let $g(x)=f(a x+b)$. Show that

$$
\mathcal{F}_{[g]}(\omega)=\frac{1}{|a|} e^{i \omega b / a} \mathcal{F}_{[f]}\left(\frac{\omega}{a}\right)
$$

(c) Derive $\mathcal{F}_{\left[f_{c}\right]}(\omega)$ where

$$
f_{c}(x)= \begin{cases}1 & -c<x \leq c \\ 0 & \text { otherwise }\end{cases}
$$

and c is a positive constant.
(d) For the piecewise constant function

$$
h(x)= \begin{cases}0 & x>4 \\ 2 & 3<x \leq 4 \\ 1 & 2<x \leq 3 \\ 3 & 1<x \leq 2 \\ 0 & x \leq 1\end{cases}
$$

derive its Fourier transform $\mathcal{F}_{[h]}(\omega)$.

