2009 Paper 2 Question 9

Regular Languages and Finite Automata

Let L be a language over an alphabet Σ. The equivalence relation \sim_{L} on the set Σ^{*} of finite strings over Σ is defined by $u \sim_{L} v$ if and only if for all $w \in \Sigma^{*}$ it is the case that $u w \in L$ if and only if $v w \in L$.
(a) Suppose that $L=L(M)$ is the language accepted by a deterministic finite automaton M. For each $u \in \Sigma^{*}$, let $s(u)$ be the unique state of M reached from the initial state after inputting the string u. Show that $s(u)=s(v)$ implies $u \sim_{L} v$. Deduce that for this L the number of \sim_{L}-equivalence classes is finite. [Hint: if M has n states, show that no collection of equivalence classes can contain more than n distinct elements.]
(b) Suppose that $\Sigma=\{a, b\}$ and L is the language determined by the regular expression $a^{*} b(a \mid b)$. Using part (a), or otherwise, give an upper bound for the number of \sim_{L}-equivalence classes for this L.
(c) Suppose that $\Sigma=\{a, b\}$ and $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. By considering a^{n} for $n \geq 0$, or otherwise, show that for this L there are infinitely many different \sim_{L}-equivalence classes.

