2009 Paper 2 Question 8

Probability

(a) Consider a random variable, X, taking non-negative integer values.
(i) Define the probability generating function, $G_{X}(z)$, of the random variable X.
(ii) Derive the expression for the expectation, $\mathbb{E}(X)$, in terms of the first derivative of $G_{X}(z)$.
(b) Calculate $G_{X}(z)$ in the following two cases.
(i) Suppose that X takes values equally likely from the set $\{0,1,2,3,4,5\}$.
(ii) Suppose that X has the $\operatorname{Binomial}$ distribution $\operatorname{Bin}(n, p)$ where $0 \leq p \leq 1$ and n a positive integer.
(c) Suppose that X and Y are two independent random variables each taking non-negative integer values and let their probability generating functions be $G_{X}(z)$ and $G_{Y}(z)$, respectively. Show that $X+Y$ has a probability generating function, $G_{X+Y}(z)$, given by

$$
G_{X+Y}(z)=G_{X}(z) G_{Y}(z)
$$

(d) Suppose that X and Y are independent random variables with the marginal distributions $\operatorname{Bin}\left(n_{1}, p_{1}\right)$ and $\operatorname{Bin}\left(n_{2}, p_{2}\right)$, respectively.
(i) Find the generating function $G_{X+Y}(z)$ and the expectation, $\mathbb{E}(X+Y)$.
(ii) Under what conditions on the parameters n_{1}, p_{1} and n_{2}, p_{2} is $X+Y$ again a Binomial distribution?

