2009 Paper 2 Question 6

Discrete Mathematics II

- (a) A partial order (P, \leq) comprises a set P together with a binary relation \leq which is reflexive, transitive and antisymmetric. Explain what the terms reflexive, transitive and antisymmetric mean. [3 marks]
- (b) The relation \leq on natural numbers $\mathbb{N} = \{1, 2, \dots\}$ is defined by

 $m \leq n$ iff m divides n, that is $m \cdot k = n$ for some integer k.

Invoking standard facts about division, establish that \leq is a partial order. If in the definition of \leq we used the set of all integers \mathbb{Z} , instead of \mathbb{N} , would (\mathbb{Z}, \leq) be a partial order? Explain your answer briefly. [5 marks]

- (c) Draw the Hasse diagram for \leq on the set $\{1, 2, \dots, 13\}$. Identify the greatest lower bound (glb) and least upper bound (lub) of $\{4, 6\}$. Does the partial order (\mathbb{N}, \leq) have greatest lower bounds and least upper bounds of all subsets of \mathbb{N} , including all infinite subsets? Explain your answers briefly. [6 marks]
- (d) An *atom* of the partial order (\mathbb{N}, \leq) is an element $a \in \mathbb{N}$ such that

 $\forall x \in \mathbb{N}. (1 \le x \text{ and } x \le a) \Rightarrow (1 = x \text{ or } x = a).$

Identify the atoms in your Hasse diagram, and more generally in \mathbb{N} . [3 marks]

(e) Explain, without proof, why a partial order that has least upper bounds of all subsets also has greatest lower bounds of all subsets. [3 marks]