## 2009 Paper 2 Question 2

## **Digital Electronics**

- (a) With the aid of a suitable diagram, explain *set-up time*, *hold time* and *propagation delay* for a positive edge triggered D-type flip-flop. [6 marks]
- (b) The controller of a car wash machine is designed to produce the following sequence of steps.

| Water spray | Sponge | Heater |
|-------------|--------|--------|
| (W)         | (S)    | (H)    |
| 0           | 0      | 0      |
| 1           | 0      | 0      |
| 1           | 1      | 0      |
| 0           | 0      | 1      |
| 0           | 0      | 0      |

The sequence starts at W = S = H = 0 following the pressing of a button B: i.e. B = 1 if pressed, B = 0 otherwise.

If B is pressed while the heater is on (H = 1) then return to the step with the heater off (H = 0) and water spray on (W = 1) and sponge on (S = 1). Otherwise B has no effect until the entire sequence of steps is complete.

Draw a state diagram for the system.

(c) Consider the following state diagram



and the state assignment  $S_0 = 00$ ,  $S_1 = 01$ ,  $S_2 = 10$  and  $S_3 = 11$ . Write down the state table. Assuming the use of D-type flip-flops for the state registers, derive the minimised Boolean expressions for the next-state functions. Note that state =  $(Q_1, Q_0)$  where  $Q_n$  is the output from flip-flop n. [8 marks]

[6 marks]