2009 Paper 2 Question 2

Digital Electronics

(a) With the aid of a suitable diagram, explain set-up time, hold time and propagation delay for a positive edge triggered D-type flip-flop. [6 marks]
(b) The controller of a car wash machine is designed to produce the following sequence of steps.

Water spray (W)	Sponge (S)	Heater (H)
0	0	0
1	0	0
1	1	0
0	0	1
0	0	0

The sequence starts at $W=S=H=0$ following the pressing of a button B : i.e. $B=1$ if pressed, $B=0$ otherwise.

If B is pressed while the heater is on $(H=1)$ then return to the step with the heater off $(H=0)$ and water spray on $(W=1)$ and sponge on $(S=1)$. Otherwise B has no effect until the entire sequence of steps is complete.

Draw a state diagram for the system.
(c) Consider the following state diagram

and the state assignment $S_{0}=00, S_{1}=01, S_{2}=10$ and $S_{3}=11$. Write down the state table. Assuming the use of D-type flip-flops for the state registers, derive the minimised Boolean expressions for the next-state functions. Note that state $=\left(Q_{1}, Q_{0}\right)$ where Q_{n} is the output from flip-flop $n . \quad$ [8 marks]

