
2008 Paper 8 Question 8

Optimising Compilers

(a) Sometimes evaluating expressions may be partially or wholly redundant in
that they have been previously evaluated on some or all of the program paths
leading to them.

(i) Outline the theory of available expressions, including dataflow equations
and how to compute their solution. Also give a brief explanation of how
to use this solution to remove common-subexpressions. How does the idea
of either form of redundant computation relate to the notion of common-
subexpression? [7 marks]

(ii) Give an example of a redundant computation that is not removed by the
technique you give in part (i). [2 marks]

(b) Consider an intra-procedural dataflow analysis for security. Variables may
hold high-security (e.g. a PIN) or low-security (e.g. a counter) values. Program
constants are low-security, and on function entry only variables in the set H
are high-security. Security flows through direct dataflow: the result of an
assignment is assumed to be high-security if a variable on the right-hand side
may hold a high-security value.

(i) Design a dataflow analysis that calculates, for each node n in a flowgraph,
the set of variables that may hold a high-security value at n. Have you
defined a forward analysis or backward analysis? How is your dataflow
analysis implemented, noting particularly initialisation of any iteration?

[7 marks]

(ii) Give an informal argument as to why your dataflow analysis is safe or an
example of why it is not—in either case discussing reasons or interesting
cases. For this purpose treat an analysis as being safe if it is impossible
to write a function body that (1) implements the identity function and
(2) has the property that the output variable is analysed as low-security
on exit even though the input variable is high-security (a member of H)
on entry. [4 marks]

1


