Types

(a) Explain what is meant by the relation of *specialisation*, $\sigma \succ \tau$, between Mini-ML type schemes σ and Mini-ML types τ . How is \succ used in the Mini-ML type system? [4 marks]

Assuming α_1 and α_2 are distinct type variables, which of the following are valid instances of specialisation?

- (i) $\forall \alpha_1, \alpha_2(\alpha_1 \to \alpha_2) \succ (\alpha_1 \to \alpha_1) \to \alpha_1$
- (*ii*) $\forall \alpha_1(\alpha_1 \to \alpha_2) \succ (\alpha_1 \to \alpha_1) \to \alpha_1$
- (*iii*) $\forall \alpha_1(\alpha_1 \to \alpha_2) \succ (\alpha_2 \to \alpha_2) \to \alpha_2$
- $(iv) \ \forall \alpha_1(\alpha_1 \to \alpha_1) \succ (\alpha_1 \to \alpha_1) \to \alpha_2$

[6 marks]

(b) Extending Mini-ML with fixed-point expressions fix x(M), consider the following typing rules:

$$\begin{array}{ll} (\text{mono-fix}) & \frac{\Gamma, x : \forall \{\}(\tau) \vdash M : \tau}{\Gamma \vdash \texttt{fix} \, x(M) : \tau} & \text{if } x \notin dom(\Gamma) \\ (\text{poly-fix}) & \frac{\Gamma, x : \forall A(\tau) \vdash M : \tau}{\Gamma \vdash \texttt{fix} \, x(M) : \tau} & \text{if } x \notin dom(\Gamma) \text{ and } A = ftv(\tau) - ftv(\Gamma) \end{array}$$

(where as usual ftv(-) indicates the set of free type variables in -). Write $\Gamma \vdash_{\text{mono}} M : \tau$ (respectively $\Gamma \vdash_{\text{poly}} M : \tau$) if $\Gamma \vdash M : \tau$ is provable in the Mini-ML type system extended with the rule (mono-fix) (respectively with the rule (poly-fix)). Let $M = \texttt{fix} x(\lambda y((x x)y))$. State, with justification, which of the following hold for some type τ .

- (i) $\{\} \vdash_{\text{mono}} M : \tau$
- (*ii*) {} $\vdash_{\text{poly}} M : \tau$

[10 marks]