2008 Paper 7 Question 1

Additional Topics

The following protocol is meant to establish a strong shared secret between two wireless devices A and B through a Diffie–Hellman exchange over radio. To guard against man-in-the-middle attacks, in message 3 device A sends device B a 16-bit secret random value R over a different channel, for example by showing the value on A's screen and having the human user retype it into B's keypad.

Notation: x|y indicates the concatenation of bit strings x and y, while $m_K(x)$ indicates the MAC (message authentication code) of message x using key K.

(1)	$A \to B$:	g^a
(2)	$A \leftarrow B$:	g^b
(3)	$A \to B$:	R
(4)	$A \to B$:	$m_{K_A}(A g^a g^b R)$
(5)	$A \leftarrow B$:	$m_{K_B}(B g^a g^b R)$
(6)	$A \to B$:	K_A
(7)	$A \leftarrow B$:	K_B
(8)	(on their own)	:	(verification)
(9)	$A \leftrightarrow B$:	(confirmation)

(a) Explain what the resulting shared secret will be and what additional verification and confirmation steps each side must take after exchanging the first 7 messages shown above.
[3 marks]

In the following questions, "explain *in detail*" means with reference to the exact messages exchanged and expected by A, B and a man-in-the-middle M; and, where appropriate, with suitable protocol diagrams involving all three.

- (b) Explain in detail how a man-in-the-middle M could successfully attack this protocol if R were not used or if M could eavesdrop on message 3. [4 marks]
- (c) Explain in detail how the introduction of R stops the man-in-the-middle.

[5 marks]

(d) Explain in detail how the man-in-the-middle could still successfully attack this protocol if the confirmation of step 9 were omitted. [8 marks]