2008 Paper 4 Question 4

Mathematical Methods for Computer Science

(a) Consider a simple random walk, S_{n}, defined by $S_{0}=a$ and $S_{n}=S_{n-1}+X_{n}$ for $n \geq 1$ where the random variables $X_{i}(i=1,2, \ldots)$ are independent and identically distributed with $P\left(X_{i}=1\right)=p$ and $P\left(X_{i}=-1\right)=1-p$ for some constant p with $0 \leq p \leq 1$.
(i) Find $E\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$ in terms of a, n and p.
(ii) Use the central limit theorem to derive an approximate expression for $P\left(S_{n}>k\right)$ for large n. You may leave your answer expressed in terms of the distribution function $\Phi(x)=P(Z \leq x)$ where Z is a standard Normal random variable with zero mean and unit variance. [6 marks]
(b) Consider the Gambler's ruin problem defined as in part (a) but with the addition of absorbing barriers at 0 and N where N is some positive integer. Derive an expression for the probability of ruin (that is, being absorbed at the zero barrier) when starting at position $S_{0}=a$ for each $a=0,1, \ldots, N$ in the two cases
(i) $p \neq \frac{1}{2}$
(ii) $p=\frac{1}{2}$.

