2008 Paper 3 Question 5

Mathematical Methods for Computer Science

(a) Define the Fourier transform, $\mathcal{F}_{[f(x)]}(w)$, of a function $f(x)$ and the inverse transform to construct $f(x)$ in terms of $\mathcal{F}_{[f(x)]}(w)$.
(b) Show that

$$
\frac{d}{d w}\left(\mathcal{F}_{[f(x)]}(w)\right)=\mathcal{F}_{[-i x f(x)]}(w) .
$$

[4 marks]
(c) Define the convolution $f(x) * g(x)$ of two functions $f(x)$ and $g(x)$. State and prove the convolution theorem.
(d) Consider the function $f_{a}(x)$ in the case where a is a positive constant defined by $f_{a}(x)=e^{-a x}$ for $x \geq 0$ and zero for $x<0$. Derive the Fourier transform of $f_{a}(x)$.
(e) Use the convolution theorem to determine the convolution $f_{a}(x) * f_{b}(x)$ where a and b are positive constants when
(i) $a \neq b$
(ii) $a=b$.
[Note: You may assume that any appropriate integrals exist and that the order of integration and differentiation may be interchanged as necessary.]

