## 2008 Paper 2 Question 4

## Discrete Mathematics

Let $I$ be a non-empty subset of the natural numbers $\mathbb{N}=\{1,2,3, \cdots\}$.
The set $S$ is defined to be least subset of $\mathbb{N}$ such that

$$
\begin{aligned}
& I \subseteq S, \text { and } \\
& \text { if } m, n \in S \text { and } m<n, \text { then }(n-m) \in S .
\end{aligned}
$$

Define $h$ to be the least member of $S$. This question guides you through to a proof that $h$ coincides with the highest common factor of $I$, written $h c f(I)$, and defined to be the natural number with the properties that
$h c f(I)$ divides $n$ for every element $n \in I$, and if $k$ is a natural number which divides $n$ for every $n \in I$, then $k$ divides $h c f(I)$.
[Throughout this question you may assume elementary facts about division.]
(a) The set $S$ may also be described as the least subset of $\mathbb{N}$ closed under certain rules. Describe the rules. Write down a principle of rule induction appropriate for the set $S$.
(b) Show by rule induction that $h c f(I)$ divides $n$ for every $n \in S$.
(c) Let $n \in S$. Establish that

$$
\text { if } p . h<n \text { then }(n-p . h) \in S
$$

for all non-negative integers $p$.
(d) Show that $h$ divides $n$ for every $n \in S$. [Hint: suppose otherwise and derive a contradiction.]
(e) Explain very briefly why the results of parts (b) and (d) imply that $h=h c f(I)$.
[3 marks]

