2008 Paper 2 Question 4

Discrete Mathematics

Let I be a non-empty subset of the natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$.

The set S is defined to be least subset of \mathbb{N} such that

 $I \subseteq S$, and if $m, n \in S$ and m < n, then $(n - m) \in S$.

Define h to be the least member of S. This question guides you through to a proof that h coincides with the *highest common factor* of I, written hcf(I), and defined to be the natural number with the properties that

hcf(I) divides n for every element $n \in I$, and if k is a natural number which divides n for every $n \in I$, then k divides hcf(I).

[Throughout this question you may assume elementary facts about division.]

- (a) The set S may also be described as the least subset of \mathbb{N} closed under certain rules. Describe the rules. Write down a principle of rule induction appropriate for the set S. [4 marks]
- (b) Show by rule induction that hcf(I) divides n for every $n \in S$. [3 marks]
- (c) Let $n \in S$. Establish that

if
$$p.h < n$$
 then $(n - p.h) \in S$

for all non-negative integers p.

[5 marks]

- (d) Show that h divides n for every $n \in S$. [Hint: suppose otherwise and derive a contradiction.] [5 marks]
- (e) Explain very briefly why the results of parts (b) and (d) imply that h = hcf(I). [3 marks]