2008 Paper 2 Question 3

Discrete Mathematics

Let X and Y be sets. You are reminded that a relation from X to Y is a subset of the product $X \times Y$.
(a) Explain what it means for a relation f from X to Y to be a function, an injection and a surjection from X to Y.
(b) A bijection from X to Y is defined to be a function from X to Y which is both an injection and a surjection. Prove that a function f from X to Y is a bijection iff it has an inverse function g, i.e. g is a function from Y to X such that $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$.
[Remember to prove both the "if" and "only if" parts of the assertion.]
(c) Describe, without proof, a bijection from $\mathcal{P}(X \times Y)$ to $(X \rightarrow \mathcal{P}(Y))$ and its inverse.

