Mathematics for Computation Theory

(a) Prove Arden's Rule for events, that $X=A^{*} B$ is the least solution of the inequality $X \geqslant B+A X$.
(b) Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be a partitioning of an $(n \times n)$ event matrix. You may assume that, with the same partitioning, the matrix

$$
M^{*}=\left(\begin{array}{cc}
\left(A+B D^{*} C\right)^{*} & A^{*} B\left(D+C A^{*} B\right)^{*} \\
D^{*} C\left(A+B D^{*} C\right)^{*} & \left(D+C A^{*} B\right)^{*}
\end{array}\right)
$$

The deterministic finite automaton M has a 3 -symbol alphabet $\{a, b, c\}$, and a single accepting state α, the initial state. The transition diagram is as follows:

Show that the event accepted by M can be denoted by the regular expression

$$
\left\{a+\left(c+b c^{*} a\right)\left(b+a c^{*} a\right)^{*} c+\left(b+c b^{*} a\right)\left(c+a b^{*} a\right)^{*} b\right\}^{*}
$$

[12 marks]
Explain, with reference to M, what is happening in the term $\left(c+b c^{*} a\right)\left(b+a c^{*} a\right)^{*} c$ in the brackets above.

