2008 Paper 13 Question 1

Bioinformatics

(a) A long DNA sequence is used as a training set for parameter estimation of the DNA statistical model. The observed counts of sixteen dinucleotides N_{XY} are as follows:

1	T	C	A	$G \downarrow$
T	306	228	126	114
C	144	102	216	138
A	222	120	132	126
$\backslash G$	114	102	132	$_{132}/$

Calculate:

- (i) the transition probabilities P_{TT} and P_{AG} of the first-order Markov model of the DNA sequence; [3 marks]
- (*ii*) the transition probabilities P_{TT} and P_{AG} of the first-order Markov model of the DNA sequence complementary to the given sequence. [3 marks]
- (b) Build the tree from the following distance matrix between species A, B, C, Dusing the UPGMA (Unweighted Pair Group Method using arithmetic Averages) method. [7 marks]

	A	B	C	D
A		0.26	0.34	0.29
B			0.42	0.44
C				0.44
D				

(c) Describe how you would build a hidden Markov model (HMM) to predict protein secondary structure. [7 marks]