2008 Paper 11 Question 4

Introduction to Functional Programming

(a) Specify the types of the following SML functions.
(i) fun $\mathrm{B} x \mathrm{y} \mathrm{z}=\mathrm{x}$ (y z) [2 marks]
(ii) fun C x y z = x z y
(iii) fun W x y = x y y
(b) Let datatype α tree = leaf | node of $\alpha * \alpha$ tree $* \alpha$ tree be the datatype of binary trees.

Write an SML function DF: α tree \rightarrow int tree that given a tree outputs a tree of the same shape, but with the values at the nodes replaced by their number in depth-first order.

For example, the depth-first numbering of the tree

```
node( "a" ,
    node( "b" , node("c",leaf,leaf) , node("c",leaf,leaf) ) ,
    node( "b" , leaf , node("c",leaf,leaf) ) )
```

is the tree

```
node( 1 ,
    node( 2 , node(3,leaf,leaf) , node(4,leaf,leaf) ) ,
    node( 5 , leaf , node(6,leaf,leaf) ) )
```

(c) Let datatype α inftree $=$ node of α * (unit $\rightarrow \alpha$ inftree list) be the datatype of finite and infinite non-empty finitely-branching trees.
(i) The computation tree of a function $f: \alpha \rightarrow \alpha$ list starting at $s: \alpha$ is the possibly infinite tree with root s in which every node n has children n_{1}, \ldots, n_{k} whenever $f(n)=\left[n_{1}, \ldots, n_{k}\right]$.

Write an SML function CT: ($\alpha \rightarrow \alpha$ list) $\rightarrow \alpha \rightarrow \alpha$ inftree such that CT $f s$ is the computation tree of f starting at s. [4 marks]
(ii) Define the datatype α seq of finite and infinite lists of type α and write an SML function BF: α inftree $\rightarrow \alpha$ seq that lists the nodes of a tree according to a breadth-first traversal.

