Data Structures and Algorithms

(a) Take an initially empty hash table with five slots, with hash function $h(x)=x \bmod 5$, and with collisions resolved by chaining. Draw a sketch of what happens when inserting the following sequence of keys into it: 35, 2 , $18,6,3,10,8,5$.
[You are not requested to draw the intermediate stages as separate figures, nor to show all the fields of each entry in detail.]
(b) Repeat part (a) but with the following three changes: the hash table now has ten slots, the hash function is $h(x)=x \bmod 10$, and collisions are resolved by linear probing.
(c) Imagine a hash table implementation where collisions are resolved by chaining but all the data stays within the slots of the original table. All entries not containing key-value pairs are marked with a Boolean flag and linked together into a free list.
(i) Give clear explanations on how to implement the set(key, value) method in expected constant time, highlighting notable points and using high-level pseudocode where appropriate. Make use of doubly-linked lists if necessary.
(ii) Assume the hash table has 5 slots, is initially empty and uses the hash function $h(x)=x \bmod 5$. Draw five diagrams of the hash table representing the initially empty state and then the table after the insertion of each of the following key-value pairs: $(2, \mathrm{~A}),(2, \mathrm{C}),(12, \mathrm{~T})$, ($5, \mathrm{Z}$). In the final diagram, draw all the fields and pointers of all the entries.

