
2007 Paper 9 Question 16

Optimising Compilers

(a) Summarise very briefly (one short paragraph each) the overall idea behind
program analysis using

(i) abstract interpretation;

(ii) set-constraint-based (CFA-like) analysis;

(iii) rule-based analysis.
[6 marks]

(b) Consider the following language of integer expressions e and (integer) list
expressions E where n represents integer constants, x and X respectively range
over integer and list variables, ⊕ represents integer operations (e.g. +, ≤ etc.),
and if and IF test their first argument for zero/non-zero as in C:

e ::= x | n | e1 ⊕ e2 | hd E | if(e0, e1, e2)

E ::= X | [] | e :: E | tl E | IF(e, E1, E2)

In escape analysis and optimisation, given a call to f such as

g(x, y) = f(x :: x :: [], y :: [])

we want to know whether or not the result of f can include any of the
cons-cells reachable from its arguments. A formal parameter of f that might
be incorporated into its result is known as escaping. This is useful because
if (say) formal parameter 1 to f cannot escape then cons-cells allocated for
actual parameter 1 can be allocated (more cheaply) on the stack instead of in
the heap.

This problem may be formulated as an analysis that takes an expression,
e or E, constituting the body of f . The parameters of f are the free variables,
xi and Xi, of its body.

Express this analysis using two of the techniques from part (a). In both cases
state how to use the analysis result for e or E to test “parameter Xi definitely
does not escape from E or e”. [Hint: in some analyses it is easier to treat
the variables xi and Xi just as strings, and in others as variables ranging over
{0, 1}.] [5 marks each]

(c) Indicate what changes would be necessary for one of your analyses were the
syntax also to allow a recursive call to f . [4 marks]

1

