Complexity Theory

(a) Give a precise definition of polynomial-time reductions. [2 marks]
(b) Give a precise definition of NP-completeness.
(c) Let Subset Sum denote the following decision problem:

Given a set of positive integers $S=\left\{v_{1}, \ldots, v_{n}\right\}$ and a number t, determine whether there is a subset of S that sums to exactly t.
(i) Explain why Subset Sum is in NP.
(ii) Describe a polynomial-time reduction from the problem of 3-dimensional matching to Subset Sum.
(iii) Explain why parts (i) and (ii) above imply that Subset Sum is NP-complete.
[3 marks]

