2007 Paper 5 Question 10

Foundations of Functional Programming

- (a) Writing as usual → for 1-step reduction (i.e. β-η-reduction with α-conversion only used to avoid name clashes) and → for its reflexive-transitive closure, indicate giving reasons (you may merely claim well-known results) whether the following statements are always, never or sometimes true of pure λ-terms L, M and N.
 - (i) if M = N then $M \to N$ or $N \to M$.
 - (*ii*) if $M \to M$ then M is in normal form.
 - (*iii*) if $L \to M$ and $L \to N$ then there exists L' such that $M \to L'$ and $N \to L'$
 - (iv) if $L \twoheadrightarrow M$ and $L \twoheadrightarrow N$ then there exists L' such that $M \twoheadrightarrow L'$ and $N \twoheadrightarrow L'$

[2 marks each]

- (b) Define λ -terms if, true and false that satisfy that if true M N = M and if false M N = N. [2 marks]
- (c) Given your definitions in part (b) above, indicate giving reasons whether it is always, never or sometimes true that:
 - (i) if true $M N \rightarrow_e M$ where \rightarrow_e represents eager evaluation
 - (*ii*) if true $M \ N \rightarrow_{\ell} M$ where \rightarrow_{ℓ} represents lazy evaluation

[3 marks each]

(d) Explain why the β -reduction rule tends not to be used literally for implementing functional programming languages, indicating *two* alternatives. [4 marks]