2007 Paper 4 Question 2

Probability

Suppose you have k light bulbs, where $k>1$, and that the probability of any individual bulb not working is p. Two strategies for testing the k bulbs are:
(A) Test each bulb separately. This takes k tests.
(B) Wire up all k bulbs as a series circuit. If all the bulbs come on, the testing is complete in just one test, otherwise revert to strategy A taking a total of $k+1$ tests.

Let X be a random variable whose value r is the number of tests required using strategy B. The probability $\mathrm{P}(X=r)$ may be expressed as:

$$
\mathrm{P}(X=r)= \begin{cases}(1-p)^{k}, & \text { if } r=1 \\ 1-(1-p)^{k}, & \text { if } r=k+1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Explain this function and justify the constraint $k>1$.
(b) Determine the Expectation $\mathrm{E}(X)$.
(c) Strategy B beats strategy A (by requiring fewer tests) if $\mathrm{E}(X)<k$ and this condition is satisfied if $p<f(k)$ where $f(k)$ is some function of k. Derive the function $f(k)$.
[Note that $f(k) \rightarrow 0$ as $k \rightarrow \infty$ and that the maximum value of $f(k) \approx 0.307$ (when $k=3$). Strategy B is therefore never useful if $p>0.307$.]
(d) Suppose you have n light bulbs, where $n \gg k$ and k divides n so that $n=m . k$, and you partition the n bulbs into m groups of k. Assuming that the groups are independent and again assuming that $k>1$, show that the expected number of tests is:

$$
n\left[1+\frac{1}{k}-(1-p)^{k}\right]
$$

Give a rough description of how, for a given value of p, the expression in square brackets varies with k and suggest how someone responsible for testing light bulbs might exploit this expression.

