## 2007 Paper 3 Question 6

## Mathematical Methods for Computer Science

Let

$$
b_{a}(x)= \begin{cases}1 & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a\end{cases}
$$

where $a$ is a constant such that $0<a \leq \pi$.
(a) Find the Fourier Transform, $F_{a}(\omega)$, of $b_{a}(x)$.
(b) Suppose that $f(x)$ is some $2 \pi$-periodic function with complex Fourier coefficients, $c_{n}$, for $n=0, \pm 1, \pm 2, \ldots$
(i) State an expression for $c_{n}$, for $n=0, \pm 1, \pm 2, \ldots$
(ii) Show that $c_{n}=G(n)$ for $n=0, \pm 1, \pm 2, \ldots$ where the function $G(\omega)$ is the Fourier transform of $f(x) b_{\pi}(x)$.
(c) Now suppose that $f(x)$ is the $2 \pi$-periodic function defined such that $f(x)=b_{a}(x)$ for $|x| \leq \pi$. Find the complex Fourier coefficients, $c_{n}$, for this choice of the function $f(x)$ using your result derived in part $(b)(i i)$. [6 marks]

