2007 Paper 2 Question 5

Discrete Mathematics II

The purpose of this question is to look at a method for counting certain finite sets that arise as quotients under an equivalence relation; and to apply the method to count the number of injections between two finite sets.

For a set A, let $\operatorname{Bij}(A)$ be the set of bijections from A to A. An A-action on a set X is defined to be a function $\star: X \times \operatorname{Bij}(A) \rightarrow X$, typically written in infix notation so that $x \star \sigma=\star(x, \sigma)$, such that $x \star \mathrm{id}_{A}=x$ and $(x \star \sigma) \star \tau=x \star(\sigma \circ \tau)$ for all $x \in X$ and $\sigma, \tau \in \operatorname{Bij}(A)$.
(a) Let $\star: X \times \operatorname{Bij}(A) \rightarrow X$ be an A-action on X. Show that the relation \sim on X defined by $x \sim y \stackrel{\text { def }}{\Longleftrightarrow} \exists \sigma \in \operatorname{Bij}(A) . x=y \star \sigma$, for all $x, y \in X$, is an equivalence relation.
(b) As usual, let $[x]_{\sim} \stackrel{\text { def }}{=}\{y \in X \mid x \sim y\}$ be the equivalence class of $x \in X$ under the equivalence relation \sim. Furthermore, for $x \in X$, let $e_{x}: \operatorname{Bij}(A) \rightarrow[x]_{\sim}$ be the function defined by $e_{x}(\sigma) \stackrel{\text { def }}{=} x \star \sigma$, for all $\sigma \in \operatorname{Bij}(A)$.

For $x \in X$, prove that e_{x} is surjective. For A a finite set of size n, what does this tell us about the size of $[x]_{\sim}$, for $x \in X$?
(c) An A-action on X is said to be faithful if the function e_{x} is injective for all $x \in X$. In this case:
(i) If A is a finite set of size n, what is the size of each $[x]_{\sim}$, for $x \in X$?
(ii) If, in addition, X is a finite set of size m, what is the size of the set of equivalence classes $X / \sim \stackrel{\text { def }}{=}\left\{[x]_{\sim} \mid x \in X\right\}$?

Justify your answers.
(d) For sets A and B, let $\operatorname{lnj}(A, B)$ be the set of injections from A to B. Show that the function $\bullet: \operatorname{Inj}(A, B) \times \operatorname{Bij}(A) \rightarrow \operatorname{Inj}(A, B)$ defined by $\iota \bullet \sigma \stackrel{\text { def }}{=} \iota \circ \sigma$, for all $\iota \in \operatorname{Inj}(A, B)$ and $\sigma \in \operatorname{Bij}(A)$, is an A-action on $\operatorname{Inj}(A, B)$. Prove also that it is faithful.

Note that since $\operatorname{lnj}(A, B) / \sim \cong\{S \subseteq B \mid S \cong A\}$, it follows from the results in $(c)(i i)$ and (d) that, for A and B finite, $\#(\operatorname{lnj}(A, B))=\binom{\# B}{\# A}(\# A)$!.

