2007 Paper 2 Question 4

Discrete Mathematics I

- (a) State and prove the Chinese Remainder Theorem concerning the simultaneous solution of two congruences to co-prime moduli and the uniqueness of that solution.
 [8 marks]
- (b) Consider an extension to solve a set of r simultaneous congruences:

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$\vdots$$
$$x \equiv a_r \pmod{m_r}$$

where $i \neq j \Rightarrow (m_i, m_j) = 1$ and $M = m_1 m_2 \dots m_r$.

- (i) Prove that $(m_i, M/m_i) = 1$ for $1 \le i \le r$. [3 marks]
- (*ii*) Explain briefly how to find s_i and t_i so that $m_i s_i + M t_i / m_i = 1$ for $1 \le i \le r$. It is not necessary to give a detailed algorithm. [2 marks]
- (*iii*) Let $c = a_1 t_1 m_2 m_3 \dots m_r + m_1 a_2 t_2 m_3 \dots m_r + m_1 m_2 a_3 t_3 \dots m_r + \dots + m_1 m_2 m_3 \dots a_r t_r$. Show that $c \equiv a_i \pmod{m_i}$ for $1 \le i \le r$. [4 marks]
- (iv) Show further that the solution is unique *modulo* M. [3 marks]