2007 Paper 2 Question 3

Discrete Mathematics I

(a) Given $a, b \in \mathbb{N}$ with $a \geq b$ prove carefully that there are unique values $q, r \in \mathbb{N}$ such that $a=q b+r$ and $0 \leq r<b$.
(b) Prove further that the highest common factor of a and b is equal to the highest common factor of b and r.
(c) Derive Euclid's algorithm for finding the highest common factor of two numbers.
(d) Determine the algorithm's efficiency by finding a limit for the number of divisions required in its execution expressed as a function of a.
(e) Find all values $x, y \in \mathbb{Z}$ satisfying $72 x+56 y=40$.
(f) Find all values $z \in \mathbb{Z}$ satisfying $56 z \equiv 24(\bmod 72)$. Express the answer in the form $z \equiv a(\bmod m)$.

