2007 Paper 2 Question 3

Discrete Mathematics I

- (a) Given $a, b \in \mathbb{N}$ with $a \ge b$ prove carefully that there are unique values $q, r \in \mathbb{N}$ such that a = qb + r and $0 \le r < b$. [6 marks]
- (b) Prove further that the highest common factor of a and b is equal to the highest common factor of b and r. [2 marks]
- (c) Derive Euclid's algorithm for finding the highest common factor of two numbers. [3 marks]
- (d) Determine the algorithm's efficiency by finding a limit for the number of divisions required in its execution expressed as a function of a. [3 marks]
- (e) Find all values $x, y \in \mathbb{Z}$ satisfying 72x + 56y = 40. [3 marks]
- (f) Find all values $z \in \mathbb{Z}$ satisfying $56z \equiv 24 \pmod{72}$. Express the answer in the form $z \equiv a \pmod{m}$. [3 marks]