Quantum Computing

(a) Consider a quantum finite automaton with two basis states, $|0\rangle$ being the start state and $|1\rangle$ the only accepting state. The automaton operates on a two-letter alphabet, with matrices $M_{a}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$ and $M_{b}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

What are the probabilities that the automaton accepts each of the following input strings?
(i) a
(ii) $a b a$
(iii) $a b b$
(b) Give a complete description of the probabilities of acceptance associated with various possible input strings.
(c) Prove that there is no two-state probabilistic automaton with the same behaviour as the automaton described in part (a).
[6 marks]

