2007 Paper 11 Question 6

Computation Theory

(a) What does it mean for a set of natural numbers $S \subseteq \mathbb{N}$ to be
(i) recursive?
(ii) recursively enumerable?
(b) Show that if a set is recursive, then it is also recursively enumerable. [5 marks]
(c) Let ϕ_{e} denote the partial function from \mathbb{N} to \mathbb{N} computed by the register machine with code $e \in \mathbb{N}$. Is either of the following sets of numbers recursively enumerable? Justify your answer in each case, stating clearly any standard results that you use.
(i) $S_{1}=\left\{e \in \mathbb{N} \mid\right.$ for all $x \in \mathbb{N}, \phi_{e}(x)$ is defined $\}$.
(ii) $S_{2}=\left\{e \in \mathbb{N} \mid\right.$ for some $x \in \mathbb{N}, \phi_{e}(x)$ is defined $\}$.

