
2007 Paper 11 Question 11

Introduction to Functional Programming

(a) Sorting.

(i) Write a parametric sorting SML function

sort: (α * α → bool) → α list → α list [3 marks]

(ii) Write an SML function

lex: (α * α → bool) → (α list * α list) → bool

that given as input a comparison function c returns as output a
comparison function (lex c) that would be useful for sorting lists into
lexicographical (or alphabetical) order. [2 marks]

(iii) Write a parametric lexicographic list-sorting SML function

lexsort: (α * α → bool) → α list list → α list list

[1 mark]

(b) Let

datatype α tree = empty | node of α * α tree list

type α forest = α tree list

respectively be the types of finitely-branching trees and forests.

As usual, the maximal paths of a tree are given by the lists of consecutive
nodes from the root to a leaf (empty tree). The trace of a tree is the list of all
its maximal paths, and the trace of a forest that of all its trees.

(i) Write an SML function trace: α forest → α list list that
outputs the trace of a forest according to a depth-first traversal.

[3 marks]

Write an SML function mkf: α list → α forest that outputs a
forest whose trace consists only of the input list. [2 marks]

(ii) The paths of a forest are given by lists of consecutive nodes from a root
to any other node. A trie (or prefix forest) is a forest without repeated
paths.

Write an SML function add: α list → α forest → α forest that,
given as input a list ` and then a trie t, returns as output the trie resulting
from adding ` to t; in the sense that the trace of (add ` t) is the trace
of t together with `. [4 marks]

Write a parametric trie-sorting SML function

triesort: (α * α → bool) → α forest → α forest

such that trace(triesort c t) = lexsort c (trace t) for all
comparison functions c and tries t. [5 marks]

1

