2007 Paper 10 Question 6

Mathematics for Computation Theory

State the requirements for (S, \leq) to be:

- (a) a partially ordered set;
- (b) a totally ordered set;
- (c) a well ordered set.

[5 marks]

Let \mathbb{N} be the natural numbers. Give, without proof, three examples of relations \leq_i , where i = 1, 2, 3, such that (\mathbb{N}, \leq_i) satisfies exactly *i* of the conditions (a), (b), (c). [3 marks]

Let $S = \{a, b\}$ be an alphabet, with total order a < b. Let $\Sigma = S^*$ be the set of all strings over S; for $w = s_1 s_2 \dots s_n \in \Sigma$ we write $\ell(w) = n$, and for $1 \leq r \leq n = \ell(w)$ we write $w_r = s_1 s_2 \dots s_r$. Denote by ε the unique word of Σ such that $\ell(\varepsilon) = 0$, the *null string*. Conventionally $w_0 = \varepsilon$ for all words $w \in \Sigma$.

Define relation \prec on Σ as follows:

Let $v, w \in \Sigma$, and $n = \min\{\ell(v), \ell(w)\}$. Let $r = \max\{i \mid v_i = w_i\} \leq n$.

Then $v \prec w$ if:

either (i) $\ell(v) = r;$ or (ii) $v_{r+1} = v_r a, \quad w_{r+1} = w_r b, \text{ where } v_r = w_r.$

Which of conditions (a), (b), (c) above are satisfied by (Σ, \prec) ? [12 marks]