2007 Paper 10 Question 6

Mathematics for Computation Theory

State the requirements for (S, \leqslant) to be:
(a) a partially ordered set;
(b) a totally ordered set;
(c) a well ordered set.

Let \mathbb{N} be the natural numbers. Give, without proof, three examples of relations \leqslant_{i}, where $i=1,2,3$, such that $\left(\mathbb{N}, \leqslant_{i}\right)$ satisfies exactly i of the conditions (a), (b), (c).

Let $S=\{a, b\}$ be an alphabet, with total order $a<b$. Let $\Sigma=S^{*}$ be the set of all strings over S; for $w=s_{1} s_{2} \ldots s_{n} \in \Sigma$ we write $\ell(w)=n$, and for $1 \leqslant r \leqslant n=\ell(w)$ we write $w_{r}=s_{1} s_{2} \ldots s_{r}$. Denote by ε the unique word of Σ such that $\ell(\varepsilon)=0$, the null string. Conventionally $w_{0}=\varepsilon$ for all words $w \in \Sigma$.

Define relation \prec on Σ as follows:
Let $v, w \in \Sigma$, and $n=\min \{\ell(v), \ell(w)\} . \quad$ Let $r=\max \left\{i \mid v_{i}=w_{i}\right\} \leqslant n$.
Then $v \prec w$ if:
either $\quad(i) \quad \ell(v)=r$;
or (ii) $\quad v_{r+1}=v_{r} a, w_{r+1}=w_{r} b, \quad$ where $v_{r}=w_{r}$.
Which of conditions $(a),(b),(c)$ above are satisfied by (Σ, \prec) ?

