2006 Paper 9 Question 11

Types

Given any polymorphic lambda calculus (PLC) type τ and any function ρ mapping type variables α to values $n \in \{-1, 0, 1\}$, a value $[\tau] \rho$ in $\{-1, 0, 1\}$ is defined by recursion on the structure of τ as follows.

$$\llbracket \alpha \rrbracket \rho = \rho(\alpha)$$

$$\llbracket \tau_1 \to \tau_2 \rrbracket \rho = \begin{cases} 1 & \text{if } \llbracket \tau_1 \rrbracket \rho \le \llbracket \tau_2 \rrbracket \rho \\ \llbracket \tau_2 \rrbracket \rho & \text{otherwise} \end{cases}$$

 $\llbracket \forall \alpha(\tau) \rrbracket \rho =$ the minimum of the values $\llbracket \tau \rrbracket (\rho[\alpha \mapsto n])$ for n = -1, 0, 1 (where $\rho[\alpha \mapsto n]$ is the function mapping α to n and every other α' to $\rho(\alpha')$).

If Γ is a non-empty PLC typing environment, let $\llbracket \Gamma \rrbracket \rho$ denote the minimum value of $\llbracket \tau \rrbracket \rho$ as τ ranges over the types in Γ ; in the case that Γ is empty, we define $\llbracket \Gamma \rrbracket \rho$ to be 1.

(a) Prove that if $\Gamma \vdash M : \tau$ is a valid PLC typing judgement, then for any ρ , $\llbracket \Gamma \rrbracket \rho \leq \llbracket \tau \rrbracket \rho$.

You may assume without proof that if α is not free in τ then

$$[\![\tau]\!](\rho[\alpha\mapsto n])=[\![\tau]\!]\rho$$

and also that type substitutions $\tau[\tau'/\alpha]$ satisfy

$$\llbracket \tau[\tau'/\alpha] \rrbracket \rho = \llbracket \tau \rrbracket (\rho[\alpha \mapsto \llbracket \tau' \rrbracket \rho])$$

[Hint: show that the property $\Phi(\Gamma, M, \tau) =$ "for all ρ , $\llbracket \Gamma \rrbracket \rho \leq \llbracket \tau \rrbracket \rho$ " is closed under the rules of the typing system.]

[16 marks]

(b) Deduce that there is no closed PLC expression of type

$$\forall \alpha, \beta(((\alpha \to \beta) \to \alpha) \to \alpha)$$

[4 marks]