
2006 Paper 8 Question 8

Optimising Compilers

(a) Summarise the idea of a basic block and explain why it is useful in intermediate
representations for optimising compilers. [3 marks]

(b) Construct the flowgraph (in which every node is a basic block consisting of
one or more 3-address instructions) for the C function:

int f(int x, int y)

{

int r = x + 1;

if (y == 0) {

r = r * r;

} else {

y = y - 1;

r = r * y;

}

return r + 1;

}

[4 marks]

(c) Define static single assignment (SSA) form, and explain the changes you would
have to make to your flowgraph from part (b) in order for it to be in SSA form.

[3 marks]

(d) Consider a flowgraph in which every node contains a single 3-address
instruction. Each node whose instruction assigns some value to a variable
is considered a “definition” of that variable; we are interested in discovering,
for each node n in the flowgraph, which definitions reach n. A definition m is
considered to reach n if the variable to which m assigns a value may still have
that value at entry to n.

(i) Define the notion of a definition reaching a node in the flowgraph in terms
of possible execution flows of control. [2 marks]

(ii) By analogy with live variable or available expression analysis, or
otherwise, design dataflow equations for computing RD(n), the set of
definitions which can reach a node n. [4 marks]

(iii) Sketch an algorithm to compute RD(n), briefly commenting on any
initialisation required. [4 marks]

1


