2006 Paper 6 Question 10

Foundations of Functional Programming

(a) What does the combinator expression S S S S S S reduce to? Explain your working carefully.
(b) What would you get if you had a sequence of $n \mathbf{S}$ combinators (part (a) is the case $n=6$)?
(c) If you start with a sequence of K combinators of general length n, as in the expression ($\mathrm{K} \mathrm{K} \mathrm{K} \mathrm{K} \mathrm{K} \mathrm{K)} \mathrm{that} \mathrm{arises} \mathrm{when} n=6$, what will the expression reduce to?
(d) Now what about sequences that start S K S K S K in cases where n instances of S alternate as shown with n of K ? You should certainly include in your answer a tabulation of results for some small values of n.
[8 marks]

