2006 Paper 4 Question 6

Mathematical Methods for Computer Science

Consider the N-point Discrete Fourier Transform (DFT) of the sequence $f[n]$ for $n=0,1, \ldots, N-1$ given by

$$
F[k]=\sum_{n=0}^{N-1} f[n] e^{-2 \pi i n k / N}
$$

with the inverse DFT given by

$$
f[n]=\frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{2 \pi i n k / N}
$$

(a) Show that $F[k]$ has period N, that is $F[k+N]=F[k]$.
(b) Derive the shift property in the n-domain, namely, that $f[n-m]$ has N-point DFT given by $e^{-2 \pi i m k / N} F[k]$.
(c) Define the N-point cyclic convolution, $(f \star g)[n]$, of two sequences $f[n]$ and $g[n]$ by

$$
(f \star g)[n]=\sum_{m=0}^{N-1} f[m] g[n-m]
$$

and show that $(f \star g)[n]$ has N-point DFT given by $F[k] G[k]$ where $G[k]$ is the N-point DFT of the sequence $g[n]$.
[6 marks]
(d) Consider the sequence $f[0]=-1, f[1]=f[2]=f[3]=1$. Find the 4-point cyclic convolution $f \star f$ by
(i) direct calculation;
(ii) by first writing $f[n]$ in the form $f[n]=c[n]-2 d[n]$ where $c[0]=c[1]=$ $c[2]=c[3]=1$ and $d[0]=1, d[1]=d[2]=d[3]=0$.
[4 marks]
You may assume that the binary operation \star distributes over pointwise addition of sequences.

