2006 Paper 2 Question 8

Regular Languages and Finite Automata

- (a) Suppose that L_1 and L_2 are regular languages (over the same alphabet Σ) accepted by deterministic finite automata M_1 and M_2 respectively. Show that there is a *deterministic* finite automaton M such that for all strings u over Σ , M accepts u if and only if $u \notin L_1$ or $u \in L_2$. [8 marks]
- (b) Show that if a deterministic finite automaton M over alphabet Σ accepts all strings of length less than the number of states in M, then it must accept all strings over Σ . [4 marks]
- (c) What does it mean for two regular expressions over an alphabet Σ to be equivalent? Using parts (a) and (b), or otherwise, describe an algorithm for deciding equivalence of regular expressions. State carefully any standard results that you rely upon. [8 marks]