2006 Paper 2 Question 8

Regular Languages and Finite Automata

(a) Suppose that L_{1} and L_{2} are regular languages (over the same alphabet Σ) accepted by deterministic finite automata M_{1} and M_{2} respectively. Show that there is a deterministic finite automaton M such that for all strings u over Σ, M accepts u if and only if $u \notin L_{1}$ or $u \in L_{2}$.
(b) Show that if a deterministic finite automaton M over alphabet Σ accepts all strings of length less than the number of states in M, then it must accept all strings over Σ.
(c) What does it mean for two regular expressions over an alphabet Σ to be equivalent? Using parts (a) and (b), or otherwise, describe an algorithm for deciding equivalence of regular expressions. State carefully any standard results that you rely upon.

