## 2006 Paper 2 Question 6

## Discrete Mathematics II

(a) (i) Draw the truth tables to illustrate the truth values of $\mathrm{A} \Rightarrow \mathrm{B}$ and $\mathrm{A} \Leftrightarrow \mathrm{B}$ in terms of the truth values of A and B.
(ii) By considering their truth tables, establish the following equivalences of boolean propositions:

1. $A \Leftrightarrow(B \Leftrightarrow C)=(A \Leftrightarrow B) \Leftrightarrow C$.
2. $(F \Leftrightarrow B)=\neg B$, where $F$ is the proposition "false".
3. $\neg(B \Leftrightarrow C)=((\neg B) \Leftrightarrow C)$.
(iii) By assigning suitable truth values to propositions B and C, explain why the equivalence 3 above fails to hold if " $\Leftrightarrow$ " is replaced by " $\Rightarrow$ ".
(b) The set $S$ is defined to be the least subset of (positive) natural numbers $\mathbb{N}$ such that:
$1 \in S ;$
if $n \in S$, then $3 n \in S$;
if $n \in S$ and $n>2$, then $(n-2) \in S$.
Show that $S=\left\{m \in \mathbb{N} \mid \exists r, s \in \mathbb{N} \cup\{0\} . m=3^{r}-2 s\right\}$.
