2006 Paper 2 Question 5

Discrete Mathematics II

(a) What does it mean for a function to be an injection, surjection and bijection?
(b) Let $I=\{x \in \mathbb{R} \mid x>1\}$. Define a binary relation $g \subseteq I \times I$ by taking

$$
(u, v) \in g \quad \text { iff } \frac{1}{u}+\frac{1}{v}=1 .
$$

(i) Express v as a formula in u for $(u, v) \in g$. Deduce that g is a function $g: I \rightarrow I$.
(ii) State what properties are required of a function $h: I \rightarrow I$ in order for h to be an inverse function to g. Define an inverse function to g and prove that it has the desired properties. Deduce that $g: I \rightarrow I$ is a bijection.
(c) (i) Let X be a set. Prove there is no injection $f: \mathcal{P}(X) \rightarrow X$.
[Hint: consider the set $Y \stackrel{\text { def }}{=}\{f(Z) \mid Z \subseteq X \wedge f(Z) \notin Z\}$.] [5 marks]
(ii) Suppose now that the set X has at least two distinct elements. Define an injection $k: \mathcal{P}(X) \rightarrow(X \rightarrow X)$, from the powerset of X to the set of functions from X to X.
(iii) Prove that there is no injection from $(X \rightarrow X)$ to X when the set X has at least two distinct elements. [You may assume that the composition of injections is an injection.]

