2006 Paper 2 Question 3

Discrete Mathematics I

(a) State the Fermat-Euler theorem, carefully defining any terms that you use.

Deduce that $2^{p} \equiv 2(\bmod p)$ for any prime p.
(b) Explain how this result can be used to show that a number is composite without actually finding a factor. Give an example.
(c) Let $M_{m}=2^{m}-1$ be the $m^{\text {th }}$ Mersenne number. Suppose that m is composite. Prove that M_{m} is composite.
[3 marks]
(d) A composite number m that satisfies $2^{m} \equiv 2(\bmod m)$ is known as a pseudo-prime.
(i) Suppose that m is prime. Prove that M_{m} is either prime or a pseudoprime.
(ii) Suppose that m is a pseudo-prime. Prove that M_{m} is a pseudo-prime.
(iii) Deduce that there are infinitely many pseudo-primes.
[3 marks]

