2006 Paper 11 Question 8

Mathematics for Computation Theory

(a) What is a deterministic finite automaton (DFA) over the finite alphabet Σ ?
(b) Define the event E accepted by the DFA M over Σ.
(c) State Kleene's Theorem, which characterises the algebraic structure of events that are accepted by some DFA.
(d) Design a DFA over $\Sigma=\{a, b\}$ that accepts precisely those strings ending in b that do not contain two successive occurrences of a.
(e) Give an algebraic specification of the event, proving that your expression has the required properties.
[You may if you wish assume that if $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is a partitioning of the transition matrix of a DFA so that A and D are square, then

$$
M^{*}=\left(\begin{array}{cc}
\left(A+B D^{*} C\right)^{*} & A^{*} B\left(D+C A^{*} B\right)^{*} \\
D^{*} C\left(A+B D^{*} C\right)^{*} & \left(D+C A^{*} B\right)^{*}
\end{array}\right)
$$

with the same partitioning.]

