2006 Paper 11 Question 2

Digital Electronics

(a) An electronic die may be constructed from seven LEDs laid out in the pattern below. The LEDs are to be driven by signals (a,b,c,d).

a		c
b	d	b
c		a

A binary-to-die decoder is described in the left-hand table below with inputs ($\mathrm{n} 2, \mathrm{n} 1, \mathrm{n} 0$) and outputs (a,b,c,d). X represents don't care.
(i) What are the minimum sum-of-product equations mapping the inputs to the outputs?
[4 marks]
(ii) If the inputs to the decoder were to be driven by a three D flip-flop state machine, what are the minimum sum-of-products equations for the next state functions for ($\mathrm{n} 2, \mathrm{n} 1, \mathrm{n} 0$) to count continuously $1,2,3,4,5,6,1, \ldots$?
[6 marks]
(b) An alternative implementation is to use a 1-hot state machine plus a different decoder to form a rolling die (see right-hand table below). The states are (h1,h2,h3,h4,h5,h6) and the die output this time is (A,B,C,D).
(i) What is the minimal free running 1-hot state machine constructed from D flip-flops? You may assume that the D flip-flops have preset and clear inputs.
(ii) What are the minimum sum-of-product equations for mapping the 1-hot states to die outputs?
(iii) Is the first implementation in part (a) quicker or slower than the one in part (b)?
[3 marks]
binary to die decoder

input				output			
n 2	n 1	n 0	a	b	c	d	
0	0	0	X	X	X	X	
0	0	1	0	0	0	1	
0	1	0	1	0	0	0	
0	1	1	1	0	0	1	
1	0	0	1	0	1	0	
1	0	1	1	0	1	1	
1	1	0	1	1	1	0	
1	1	1	X	X	X	X	

1-hot to die decoder

input						output				
							h 5	h 4	h 3	
h 2	h 1	A	B	C	D					
0	0	0	0	0	1	0	0	0	1	
0	0	0	0	1	0	1	0	0	0	
0	0	0	1	0	0	1	0	0	1	
0	0	1	0	0	0	1	0	1	0	
0	1	0	0	0	0	1	0	1	1	
1	0	0	0	0	0	1	1	1	0	

