Digital Electronics

- (a) An electronic die may be constructed from seven LEDs laid out in the pattern below. The LEDs are to be driven by signals (a,b,c,d).
 - a c b d b c a

A binary-to-die decoder is described in the left-hand table below with inputs (n2,n1,n0) and outputs (a,b,c,d). X represents *don't care*.

- (i) What are the minimum sum-of-product equations mapping the inputs to the outputs? [4 marks]
- (ii) If the inputs to the decoder were to be driven by a three D flip-flop state machine, what are the minimum sum-of-products equations for the next state functions for (n2,n1,n0) to count continuously 1, 2, 3, 4, 5, 6, 1, ...?
 [6 marks]
- (b) An alternative implementation is to use a 1-hot state machine plus a different decoder to form a rolling die (see right-hand table below). The states are (h1,h2,h3,h4,h5,h6) and the die output this time is (A,B,C,D).
 - (i) What is the minimal free running 1-hot state machine constructed from D flip-flops? You may assume that the D flip-flops have preset and clear inputs.[3 marks]
 - (*ii*) What are the minimum sum-of-product equations for mapping the 1-hot states to die outputs? [4 marks]
 - (*iii*) Is the first implementation in part (a) quicker or slower than the one in part (b)? [3 marks]

billary to the decoder							
input			output				
n2	n1	n0	a	b	с	d	
0	0	0	X	Х	Х	Х	
0	0	1	0	0	0	1	
0	1	0	1	0	0	0	
0	1	1	1	0	0	1	
1	0	0	1	0	1	0	
1	0	1	1	0	1	1	
1	1	0	1	1	1	0	
1	1	1	X	Х	Х	Х	

binary	to	die	decoder
omaily	00	are	accouci

1-not to the decoder	1-hot to c	lie dec	coder
----------------------	------------	---------	------------------------

input				output					
h6	h5	h4	h3	h2	h1	A	В	\mathbf{C}	D
0	0	0	0	0	1	0	0	0	1
0	0	0	0	1	0	1	0	0	0
0	0	0	1	0	0	1	0	0	1
0	0	1	0	0	0	1	0	1	0
0	1	0	0	0	0	1	0	1	1
1	0	0	0	0	0	1	1	1	0