2006 Paper 10 Question 9

Mathematics for Computation Theory

- (a) Let A, B C be sets. Define:
 - (i) the Cartesian product $(A \times B)$;
 - (*ii*) the set of relations R between A and B;
 - (*iii*) the identity relation Δ_A on the set A.

[3 marks]

- (b) Suppose S, T are relations between A and B, and between B and C, respectively. Define the inverse relation S^{-1} and the product relation $S \circ T$. [2 marks]
- (c) Let f be a relation between A and B. Characterise the following conditions in terms of the algebra of relations:
 - (i) f is a partial function;
 - (ii) f is a total function;
 - (iii) (total) function f is a surjection (ONTO);
 - (iv) (total) function f is an injection (1-1).

[4 marks]

(d) A total function that is both a surjection and an injection is called a *bijection*. Show that if f is a bijection between A and B, f^{-1} is also a bijection.

[2 marks]

- (e) Consider the set of natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$. Define relation $f = \{((x, y), z) \mid z = 2^x(2y + 1)\} \subseteq ((\mathbb{N} \times \mathbb{N}) \times \mathbb{N})$. Which of conditions (i)-(iv) in part (c) does relation f between $(\mathbb{N} \times \mathbb{N})$ and \mathbb{N} satisfy? [6 marks]
- (f) Show how to modify f to establish a bijection $h : \mathbb{N} \to (\mathbb{N} \times \mathbb{N})$. [3 marks]