2006 Paper 10 Question 9

Mathematics for Computation Theory

(a) Let $A, B C$ be sets. Define:
(i) the Cartesian product $(A \times B)$;
(ii) the set of relations R between A and B;
(iii) the identity relation Δ_{A} on the set A.
(b) Suppose S, T are relations between A and B, and between B and C, respectively. Define the inverse relation S^{-1} and the product relation $S \circ T$.
[2 marks]
(c) Let f be a relation between A and B. Characterise the following conditions in terms of the algebra of relations:
(i) f is a partial function;
(ii) f is a total function;
(iii) (total) function f is a surjection (ONTO);
(iv) (total) function f is an injection (1-1).
[4 marks]
(d) A total function that is both a surjection and an injection is called a bijection. Show that if f is a bijection between A and B, f^{-1} is also a bijection.
[2 marks]
(e) Consider the set of natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$. Define relation $f=\left\{((x, y), z) \mid z=2^{x}(2 y+1)\right\} \subseteq((\mathbb{N} \times \mathbb{N}) \times \mathbb{N})$. Which of conditions $(i)-(i v)$ in part (c) does relation f between $(\mathbb{N} \times \mathbb{N})$ and \mathbb{N} satisfy? [6 marks]
(f) Show how to modify f to establish a bijection $h: \mathbb{N} \rightarrow(\mathbb{N} \times \mathbb{N})$. [3 marks]

