
2005 Paper 9 Question 7

Optimising Compilers

(a) Summarise the basic principles behind strictness analysis including: what
language paradigm it can be applied to, the representation of compile-time
values expressing strictness, how these may be calculated and how the results
of such calculations can be used to optimise programs. [8 marks]

(b) A program contains the following user function definitions. Give corresponding
strictness functions assuming that if-then-else takes an integer as its first
argument.

(i) fun f(x) = 42 [1 mark]

(ii) fun g(x) = g(x+1) [1 mark]

(iii) fun h(y,z) = if f(7) then y else z [2 marks]

(iv) fun k(x,y,z) = pif(x,y,z) where pif(e, e′, e′′) is a primitive which
evaluates its three arguments in parallel, returning e′ if e evaluates to a
non-zero integer, returning e′′ if e evaluates to zero and also returning e′

if e′ and e′′ evaluate to the same integer even if e is still being evaluated.
[4 marks]

(c) “Any Boolean expression be containing variables {x1, . . . , xk} but not
containing negation can be expressed as the strictness function for a user-
defined function fun u(x1, . . . , xk) = e.” Argue that this statement is true,
showing how to construct some such e from a given be. [4 marks]

[Hint: you may assume be has been written in DNF form

(v11 ∧ · · · ∧ v1m1
) ∨ · · · ∨ (vn1 ∧ · · · ∧ vnmn

)

where vij are members of {x1, . . . , xk}.]

1


