Numerical Analysis II

The best L_{∞} approximation to $f(x) \in C[-1, 1]$ by a polynomial $p_{n-1}(x)$ of degree n-1 has the property that

$$\max_{x \in [-1,1]} |e(x)|$$

is attained at n + 1 distinct points $-1 \le \xi_0 < \xi_1 < ... < \xi_n \le 1$ such that $e(\xi_j) = -e(\xi_{j-1})$ for j = 1, 2, ..., n where $e(x) = f(x) - p_{n-1}(x)$.

- (a) Let $f(x) = x^2$. Show, by means of a clearly labelled sketch graph, that the best polynomial approximation of degree 1 is a constant. [3 marks]
- (b) Now suppose $f(x) = (x + 1)/(x + \frac{5}{3})$ is the function to be approximated over [-1, 1]. By sketching the graph, deduce properties of the best linear approximation $p_1(x)$. By differentiating e(x), find $p_1(x)$. [9 marks]
- (c) Now consider $f(x) = x/(9x^2 + 16)$. Explain why the best approximation over [-1, 1] of degree 2 or less is of the form $p_2(x) = ax$, and sketch the graph to show the extreme values of e(x). Verify that x = 4/9 is one of the extreme values and find a. [8 marks]