2005 Paper 7 Question 3

Advanced Graphics

Brian and Geoff Wyvill developed a blobby object modelling method where the blobby object is defined by a number, n, of centres, \mathbf{P}_{i}, each with an associated radius, R_{i}. They define a function

$$
g(r, R)= \begin{cases}1-\frac{4}{9} \frac{r^{6}}{R^{6}}+\frac{17}{9} \frac{r^{4}}{R^{4}}-\frac{22}{9} \frac{r^{2}}{R^{2}}, & r \leq R \tag{1}\\ 0, & r>R\end{cases}
$$

and sum the contributions from all centres to give a function over all space

$$
\begin{equation*}
F(\mathbf{P})=\sum_{i=1}^{n} g\left(\left|\mathbf{P}-\mathbf{P}_{i}\right|, R_{i}\right) \tag{2}
\end{equation*}
$$

The surface of the blobby object is defined as all points, \mathbf{P}, where

$$
\begin{equation*}
F(\mathbf{P})=\frac{1}{2} . \tag{3}
\end{equation*}
$$

(a) Sketch, in 2D, the 2D blobby "surface" for each of the following cases:
(i) $n=2, \mathbf{P}_{1}=(0,0), R_{1}=2, \mathbf{P}_{2}=(4,0), R_{2}=2 ;$
(ii) $n=2, \mathbf{P}_{1}=(0,0), R_{1}=2, \mathbf{P}_{2}=(2,0), R_{2}=2$;
(iii) $n=2, \mathbf{P}_{1}=(0,0), R_{1}=2, \mathbf{P}_{2}=(3,0), R_{2}=4$.
(b) Outline an algorithm which will generate a reasonable approximation, in 3D, to the 3D blobby surface (equation 3) which could be drawn by a graphics card that can draw only triangles.
(c) Describe variations of equation 2 which allow for:
(i) CSG union of blobby objects;
(ii) CSG intersection of blobby objects;
(iii) CSG difference of blobby objects.

