2005 Paper 4 Question 9

Computation Theory

(a) What does it mean for a subset S of the set \mathbb{N} of natural numbers to be register machine decidable?
(b) For each $e \in \mathbb{N}$, let $\varphi_{e} \in \operatorname{Pfn}(\mathbb{N}, \mathbb{N})$ denote the partial function computed by the register machine program with index e. Let $e_{0} \in \mathbb{N}$ be an index for the totally undefined partial function (so that $\varphi_{e_{0}}(x) \uparrow$, for all $x \in \mathbb{N}$).

Suppose that a total function $f \in \operatorname{Fun}(\mathbb{N}, \mathbb{N})$ is extensional, in the sense that for all $e, e^{\prime} \in \mathbb{N}, f(e)=f\left(e^{\prime}\right)$ if φ_{e} and $\varphi_{e^{\prime}}$ are equal partial functions. Suppose also that the set $S_{f}=\left\{x \in \mathbb{N} \mid f(x)=f\left(e_{0}\right)\right\}$ is not the whole of \mathbb{N}, so that for some $e_{1} \in \mathbb{N}, f\left(e_{1}\right) \neq f\left(e_{0}\right)$.
(i) If membership of S_{f} were decided by a register machine M, show informally how to construct from M a register machine M^{\prime} that, started with $R 1=e$ and $R 2=n$ (any $e, n \in \mathbb{N}$) always halts, with $R 0=0$ if $\varphi_{e}(n) \downarrow$ and with $R 0=1$ if $\varphi_{e}(n) \uparrow$. Make clear in your argument where you use the fact that f is extensional.
[Hint: For each $e, n \in \mathbb{N}$ consider the index $i(e, n) \in \mathbb{N}$ of the register machine that inputs x, computes $\varphi_{e}(n)$ and if that computation halts, then computes $\varphi_{e_{1}}(x)$.]
(ii) Deduce that if f is extensional, then S_{f} is either the whole of \mathbb{N}, or not decidable.
[3 marks]

